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Importance of Normal Field Continuity in
Inhomogeneous Scattering Calculations
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Abstract —The finite element method with conventional scalar bases is
coupled with the moment method to handle the three-dimensional
scattering and/or absorption from inhomogeneous, arbitrarily shaped
objects. The C° finite element basis enforces continuity of both normal
and tangential E at element boundaries within homogeneous regions. At
dielectric interfaces, the continuity of normal D and tangential E are
enforced in a strong sense. Excellent agreement between the numerical
solution and the Mie series is obtained for both internal and scattered
fields for homogeneous and layered spheres under plane wave illumina-
tion. Compared to an alternative finite element method using edge
elements which lack strong enforcement of normal field continuity, the
present method produces higher-order approximations, especially at
dielectric interfaces, with no penalties in computational effort.

1. INTRODUCTION

HE hybrid method that combines the method of mo-

ments and the finite element method (MoM /FEM) pro-
posed in [1] is a very effective numerical technique for
treating electromagnetic scattering from complex inhomoge-
neous objects. The validity and accuracy of the hybrid formu-
lation for two- and three-dimensional problems are pre-
sented in [1] and [2], respectively.

In the FEM portion of [2], we used edge elements which
support vector basis functions as proposed in [3]. The devel-
opment of edge elements has been motivated largely by the
need to eliminate parasitic solutions in vector finite element
formulations of the Maxwell equations. The success of edge
elements in this regard has been discussed and demonstrated
in [4], [5). In our experiences with edge elements [2], [6], it
was found that due to the nature of the bases—specifically,
the lack of strong enforcement of normal field continuity—
high resolution is required near dielectric interfaces. In
addition, the computational cost can be as much as twice
that required by scalar bases [6].

In previous papers [7], [8], a finite element method using
scalar bases has been introduced which provides strong en-
forcement of both normal D and tangential E continuity
across all element boundaries, including those representing
dielectric interfaces. Further, the origin of vector parasites in
this and other differential-equation-based schemes has been
identified in [9], and a simple extension of the FEM weak
form implemented on scalar bases rids the calculations of
these difficulties [10]. Thus, in terms of eliminating unwanted
and spurious solutions in FEM calculations, scalar and vec-
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tor bases may be considered equivalent. Hence, it becomes
important to concentrate on other comparative aspects of
the bases, specifically their continuity characteristics for in-
homogeneous problems.

In this paper, the FEM weak form recommended in [10]
for scalar bases is combined in hybrid fashion with the MoM
for solving 3-D scattering problems. The work presented
here extends that published in [1], [2], and [10] and has two
purposes: 1) to show the validity and accuracy of the method
itself, and 2) to provide a direct comparison with solutions
that have been generated via edge elements. With regard to
the former purpose, numerical solutions are compared with
the Mie series for scattering from homogeneous or layered
spheres under the illumination of a plane wave. Excellent
agreement is obtained for both internal and scattered fields.
In terms of the latter objective, the same test cases as those
reported in [2] are examined, which allows the effects in-
duced in the computed solutions by the continuity behavior
of the respective bases to be compared.

II. FORMULATION

The detailed formulation of the hybrid moment and finite
element method is described in [1]. The basic formulation
remains unchanged, irrespective of the choice of bases for
the finite element method. To solve 3-D problems, the bases
for equivalent sources are chosen the same as those used in
[2, Eq. (13)]. Thus, the matrices associated with these bases
in [2, Egs. (4), (5), and (7)] remain formally unchanged.

To use the scalar bases in the finite elements, the electric
field E in the interior region is expanded as

N
E= Y E, ¢, €))
Jj=1
where {E,, j=1,2,---,N} is a set of unknown complex
vectors and {d)l, j=1,2,---, N}is a set of conventional scalar

basis functions defined within the volume bounded by a
surface S. By definition, ¢, are continuous with piccewise
continuous first derivatives. The expansion in (1) therefore
guarantees appropriate continuity of n X E and nD in
homogenous or continuously varying media.

At dielectric interfaces where electric properties change
abruptly, we follow the strategy given initially in [7]. Concep-
tually, the FEM grid is severed at an interface separating two
electrically distinct regions such that two coincident sets of
nodes exist, with separate nodal values E;; and E,, for either
side (1,2) of the interface. On assembly of the algebraic
system of equations, one of the unknowns E; is removed in
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favor of the other by enforcing

ﬁi'(fkail - EikEiz) =0

(2a)

A, X(Ey—E;)=0 (2b)
for each node i. The details of the algebra can be found in
8].

The implementation of this strategy requires definition of
a local “nodal normal” #;. In common practice, the numeri-
cal boundary is a piecewise approximation to the actual
physical one, with a discontinuous normal direction at the
nodes. The approach adopted here, as well as in our other
work [7], [8], [10], [11], is based on the flux and circulation
integrals over a material interface

[ (1B, — e5E,) ds =0 (3a)
Jix(E - Ey)ds=0. (3b)
Substitution of (1) for E results in
N
)y (ff‘Ei1—fikEi2)‘fﬁ¢idS=0 (4a)
i=1
N
Z (Etl"'EtZ)x[’Ald)z dS=0 (4b)
i=1
for which local term-by-term enforcement gives rise to
fﬁd)i ds
A= —. (5)
fﬁ(bi ds

This definition is essentially a local weighted average which
converges with mesh refinement to the unique local normal
for physically smooth boundaries. For physically nonsmooth
corners or intersecting boundaries, special singular bases can
be devised (e.g., see [12]).

This approach of requiring strong enforcement of both
normal and tangential boundary conditions at dielectric in-
terfaces using (1) contrasts with other usages of this type of
basis. In particular, others [5], [13] report the use of scalar
bases where all components of E are required to be continu-
ous everywhere, including along dielectric interfaces. Scalar
bases used in this way are incapable of resolving physically
abrupt changes at such interfaces, and it is not surprising
that this practice has produced undesirable results in het-
erogenous problems.

With this basis, we use the weak form of the Maxwell
equations recommended in [10]:

<;(V><E)><V¢,> +<
Jjop v

+( jwe*Ed), = —cﬁs,n X He;ds (6)

- *(V'E*E)V¢‘>
joue

"

where the surface integral is performed on the dielectric
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Fig. 1. The magnitude of the electric field inside a homogeneous
dielectric sphere along the x axis where kga=1/2, ¢, =16, §' =, and

&' =0.

exterior surface S, { ), denotes integration over the en-
closed volume, and n X H is the tangential magnetic field.
The surface integral in (6) represents the natural boundary
condition and facilitates the coupling between FEM and
MoM as formulated in [2]. To complete the discretization, E
is expanded as in (1) with strong enforcement of the continu-
ity of n X E and n-e*E at dielectric boundaries as outlined
above.

I1I. NUMERICAL RESULTS

In the following, the scattering from a dielectric sphere
under the illumination of a plane wave is studied since there
exists an analytical (Mie series) solution for comparison. As
in [2], the finite element mesh for the sphere consists of both
tetrahedra and pentahedra elements and is generated by
dividing the radius (0 < < R) with N, divisions, the polar
angle (0 < 6 < 7) with N, divisions, and the azimuthal angle
(0 < ¢ <27) with 2N, divisions. (N, N, N,) then denotes
the number of divisions used in each model. For example,
(8,8,4) indicates that there are eight divisions in 8 direction,
16 divisions in ¢ direction, and four divisions in radial
direction.

For ease of comparison, we compute the solutions for the
same cases as in [2], with identical geometric resolution. As a
result, there are fewer electromagnetic degrees of freedom
in the present calculations. For example, in model (8,8,4)
there are 457 nodes which results in 1371 electromagnetic
degrees of freedom and a bandwidth of 677 when the scalar
basis is used. The corresponding vector basis calculation
results in 2856 electromagnetic degrees of freedom with an
accompanying bandwidth of 733. Finally, in presenting the
results we use the actual bases everywhere, without further
interpolation—so the plots are piecewise linear for the scalar
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Fig. 2. The radar cross section of the same homogeneous dielectric
sphere as in Fig. 1.
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Fig. 3. The magnitude of the electric field inside a homogeneous
dielectric sphere along a radial direction (#=¢ =1 /3), where koo = (b)

1/2, €, =4, 6=, and ¢'=0.

Fig. 4. The magnitude of the electric field inside a two-layered dielec-
tric sphere along the x axis where kqa; =7 /10, €1=1 koay=7/5,
. , g' =, and &' =0.(a) €, =4; (D) €,, =16

bases while the vector bases used in [2] have an abrupt, ¢ €r2 €r2

stair-case characteft.

Fig. 1 shows the magnitude of electric field along the x solution is superior to the step-wise solution reported in [2].
axis inside a homogenecous sphere under the illumination of It is interesting to note that the vector bases used in (2]
an x-directed plane wave, where kga=1/2, €, = 16, ¢' =0, produce slightly better far field in the forward direction than
' = 7. The internal field at 2 given location is computed the scalar bases used here. Fig. 3 shows the magnitude of the
using (1). Fig. 2 shows the far field of the same sphere as in electric field along a radial direction (8=¢ =1 /3) for a
Fig. 1. Comparing to [2, Fig. (2)], the present piecewise lincar homogeneous sphere, where kga=1/2,€,= 4, ¢'=0, gi=m.
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Fig. 5. The radar cross section of a homogeneous dielectric lossy
prolate spheroid where a/b=2, k,a=w/2, €, =4, o =0.00417234,
6' =, and ¢’ = 0.0.

The numerical solutions agree well with the corresponding
Mie series (exact) solutions.

Fig. 4 shows the magnitude of the electric field on the x
axis for a concentric sphere with inner sphere having radius
a/2, €,4=1, and outer sphere having (a) €,, =4.0 and (b)

€,, =16, where kqa=m /5, ¢' =0, and 6'=1. On the di-
clectric interface (r =a /2, 6 =7 /2, and ¢ =0), E, is the
normal component which should be discontinuous by a fac-
tor of 4 and 16, respectively. E, and E, arc the tangential
components which should be continuous. Note that since the
interface conditions are enforced strongly, errors at the
interface can be amplified by the dielectric contrast.
Nonetheless, the solutions shown are quite accurate espe-
cially in light of the relatively coarse mesh sizes used. In fact,
the solution is dramatically improved by using an (8,8,6)
model which represents a modest increase in the number of
degrees of freedom. Finally, for completeness we show the
radar cross-section of a prolate spheroid in Fig. 5. Good
agreement between the scalar and vector basis solutions
[2, Fig. 7] is obtained in this case.

IV. ConcLusION

The finite element method with an extended weak form
and conventional C° scalar basis functions is successfully
coupled with the method of moments for solving scattering
from inhomogeneous 3-D objects. Excellent agreement be-
tween the numerical solution and Mie series solution is
obtained for both internal and scattered fields. Enforcement
of normal conditions on n-e*E at dielectric interfaces, in a
strong sense, allows relatively coarse discretization of adja-
cent media, without the complications of wrinkles in previ-
ously reported solutions which lacked this important feature.
There are no computational drawbacks in terms of run-time
or memory requirements relative to the alternative edge
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elements. To the contrary, the ,experimen'ts performed to
date indicate a modest decrease in these requirements.
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